Tracing of Two Pseudomonas Strains in the Root and Rhizoplane of Maize, as Related to Their Plant Growth-Promoting Effect in Contrasting Soils
نویسندگان
چکیده
TaqMan-based quantitative PCR (qPCR) assays were developed to study the persistence of two well-characterized strains of plant growth-promoting rhizobacteria (PGPR), Pseudomonas fluorescens Pf153 and Pseudomonas sp. DSMZ 13134, in the root and rhizoplane of inoculated maize plants. This was performed in pot experiments with three contrasting field soils (Buus, Le Caron and DOK-M). Potential cross-reactivity of the qPCR assays was assessed with indigenous Pseudomonas and related bacterial species, which had been isolated from the rhizoplane of maize roots grown in the three soils and then characterized by Matrix-Assisted Laser Desorption Ionization (MALDI) Time-of-Flight (TOF) mass spectrometry (MS). Sensitivity of the qPCR expressed as detection limit of bacterial cells spiked into a rhizoplane matrix was 1.4 × 102 CFU and 1.3 × 104 CFU per gram root fresh weight for strain Pf153 and DSMZ 13134, respectively. Four weeks after planting and inoculation, both strains could readily be detected in root and rhizoplane, whereas only Pf153 could be detected after 8 weeks. The colonization rate of maize roots by strain Pf153 was significantly influenced by the soil type, with a higher colonization rate in the well fertile and organic soil of Buus. Inoculation with strain DSMZ 13134, which colonized roots and rhizoplane to the same degree, independently of the soil type, increased yield of maize, in terms of biomass accumulation, only in the acidic soil of Le Caron, whereas inoculation with strain Pf153 reduced yield in the soil Buus, despite of its high colonization rate and persistence. These results indicate that the colonization rate and persistence of inoculated Pseudomonas strains can be quantitatively assessed by the TaqMan-based qPCR technique, but that it cannot be taken for granted that inoculation with a well-colonizing and persistent Pseudomonas strain has a positive effect on yield of maize.
منابع مشابه
Effect of arbuscular mycorrhizal fungus, plant growth promoting rhizobacterium, and soil drying on different forms of potassium and clay mineral changes in a calcareous soil under maize planting
ABSTRACT- Greenhouse experiment was conducted in factorial experiment arranged as a completely randomized design (CRD) to evaluate the effect of Glomus intraradices, Pseudomonas fluorescence and soil drying on different forms of potassium (K) and the changes of clay minerals in a calcareous soil after maize planting. Treatments consisted of arbuscular mycorrhizal (AM) fungus at two levels: G0 (...
متن کاملبررسی اثر باکتریهای محرک رشد بر عملکرد کمی و کیفی ذرت سیلویی
This research was conducted to investigate the effect of growth-promoting bacteria on yield and some traits of maize. This experiment was performed as a factorial randomized complete block design with three replications at research farm of Islamic Azad University, Izeh branch, Iran. The experimental factors included four strains of plant growth-promoting bacteria: Pseudomonas fluorescent 169 (B...
متن کاملThe physiological and biochemical responses of directly seeded and transplanted maize (Zea mays L.) supplied with plant growth-promoting rhizobacteria (PGPR) under water stress
The purpose of the present study was to investigate the effect of plant growth-promoting rhizobacteria(PGPR) on physiological and biochemical properties of maize (Zea mays L.) in different cultivation methods under water stress. The experiment was carried out as split-plot design including water stress (well-watered, mild stress, and severe stress) as main plot and also cultiv...
متن کاملBrachiaria Grasses (Brachiaria spp.) harbor a diverse bacterial community with multiple attributes beneficial to plant growth and development
Endophytic and plant-associated bacteria were isolated from plants and rhizoplane soil of naturally grown Brachiaria grasses at International Livestock Research Institute in Nairobi, Kenya. Eighty-four bacterial strains were isolated from leaf tissues, root tissues, and rhizoplane soil on nutrient agar and 869 media. All bacterial strains were identified to the lowest possible taxonomic unit us...
متن کاملEffects of Azotobacter and Pseudomonas inoculation in mitigate drought stress effects in Dactylis glomerata L.
Background and objectives One of the main causes of plant growth and development disorders is the presence of adverse environmental conditions such as drought, which leads to stress in plants and endangers their survival. Recent research, however, recommends the use of soil microorganisms, especially plant growth-promoting bacteria, which are involved in plant growth as well as the nutrient cy...
متن کامل